Pythonとは
基本的な使い方
・ IDLE
・ Jupyter Notebook
・ Markdown
・ コマンドプロンプトで実行
・ 仮想環境の構築
・ 仮想環境でIDLEを実行
ライブラリのインストール
・ pipの使い方
・ numpy , matplotlib等
・ graphviz
・ pytorch
・ Mecab
Pythonの関数: 一覧
共通関数
・ append , extend
・ class
・ copy
・ csv.reader
・ csv.writer
・ def , return
・ dict , defaultdict
・ enumerate
・ exit
・ for
・ if
・ import
・ in
・ input
・ lambda
・ len
・ list
・ min/max
・ OrderedDict
・ open/close
・ os
・ pickle
・ print
・ range
・ re.split
・ read/readline
・ round/floor/ceil
・ split
・ sys.argv
・ time
・ while
・ write
・ zip
・特殊メソッド
・ __name__
・ __iter__ , __next__
・ 正規表現、メタ文字
・ データの型の種類
・ 四則演算 (+ , - , * , /)
・ コメントアウト (# , ''')
numpy
・ append
・ arange
・ argmax/argmin
・ array
・ asfarray
・ astype , dtype
・ digitize
・ dot
・ hstack/vstack
・ linalg.solve
・ linspace
・ max,min
・ mean
・ meshgrid
・ mgrid
・ ndim
・ ndmin
・ pad
・ poly1d
・ polyfit
・ prod
・ random
・ reshape
・ savetxt/loadtxt
・ shape
・ std
・ transpose
・ where
・ zeros/zeros_like
scipy
・ expit
・ imread
・ interpolate
・ signal.square, sawtooth
matplotlib
・ contour
・ imshow
・ figure
・ pcolormesh
・ plot
・ quiver
・ scatter
scikit-learn
・ GaussianNB
・ KMeans
・ KNeighborsClassifier
・ SVC
・ tree
chaospy
keras
chainer
chainerrl
pandas
・ データ抽出
・ concat
・ DataFrame
・ read_excel
pytorch
・ BCELoss , MSELoss
・ Embedding
・ device
・ Sequential
・ Dataset, Dataloader
・ RNN, LSTM
OpenAI gym
・ Blackjack-v0
・ CartPole-v0
seaborn
・ pairplot
tkinter
・ frame, grid
・ 画像表示
・ 画像を切り取り表示
・ 画像を保存
目的別
・ ステップ関数
・ 矩形波, 三角波
・ 1 of K 符号化法
・ 線形補間
・ 配列に番号をつける
・ ベクトル場を描く
・ 線形回帰, 多項式回帰
|
・In English
■GaussianNBの説明
確率分布がガウス分布のナイーブベイズ分類器です。ガウシアンナイーブベイズは、同じラベルに属しているデータのガウス分布を求め、新しいデータに対してどちらの分布に近いかを判別します。
■GaussianNBの具体例
以下グラフにおいて特徴データからテストデータのラベル値を分類します。
プログラムは以下のとおり。scikit-learn等の各種ライブラリのインストールはこちら。
from sklearn.naive_bayes import GaussianNB
import numpy as np
import matplotlib.pyplot as plt
X = np.array([[5,10],[8,50],[10,20]]) # 特徴データ
Y = np.array([1, 2, 3]) # 特徴データのラベル
t = np.array([[9,20]]) # テストデータ
clf = GaussianNB() # ガウシアンナイーブベイズの定義
clf.fit(X, Y) # 特徴データにフィッティング
print(clf.predict(t)) # テストデータを分類
plt.plot([5,8,10],[10,50,20],'o') # 特徴データのプロット
plt.plot([9],[20],'^') # テストデータのプロット
plt.grid(True)
plt.show()
結果は3という値を返したと思います。確かに特徴データの3に近いところにあるので、結果は妥当かと思います。
サブチャンネルあります。⇒ 何かのお役に立てればと
Pythonとは
基本的な使い方
・ IDLE
・ Jupyter Notebook
・ Markdown
・ コマンドプロンプトで実行
・ 仮想環境の構築
・ 仮想環境でIDLEを実行
ライブラリのインストール
・ pipの使い方
・ numpy , matplotlib等
・ graphviz
・ pytorch
・ Mecab
Pythonの関数: 一覧
共通関数
・ append , extend
・ class
・ copy
・ csv.reader
・ csv.writer
・ def , return
・ dict , defaultdict
・ enumerate
・ exit
・ for
・ if
・ import
・ in
・ input
・ lambda
・ len
・ list
・ min/max
・ OrderedDict
・ open/close
・ os
・ pickle
・ print
・ range
・ re.split
・ read/readline
・ round/floor/ceil
・ split
・ sys.argv
・ time
・ while
・ write
・ zip
・特殊メソッド
・ __name__
・ __iter__ , __next__
・ 正規表現、メタ文字
・ データの型の種類
・ 四則演算 (+ , - , * , /)
・ コメントアウト (# , ''')
numpy
・ append
・ arange
・ argmax/argmin
・ array
・ asfarray
・ astype , dtype
・ digitize
・ dot
・ hstack/vstack
・ linalg.solve
・ linspace
・ max,min
・ mean
・ meshgrid
・ mgrid
・ ndim
・ ndmin
・ pad
・ poly1d
・ polyfit
・ prod
・ random
・ reshape
・ savetxt/loadtxt
・ shape
・ std
・ transpose
・ where
・ zeros/zeros_like
scipy
・ expit
・ imread
・ interpolate
・ signal.square, sawtooth
matplotlib
・ contour
・ imshow
・ figure
・ pcolormesh
・ plot
・ quiver
・ scatter
scikit-learn
・ GaussianNB
・ KMeans
・ KNeighborsClassifier
・ SVC
・ tree
chaospy
keras
chainer
chainerrl
pandas
・ データ抽出
・ concat
・ DataFrame
・ read_excel
pytorch
・ BCELoss , MSELoss
・ Embedding
・ device
・ Sequential
・ Dataset, Dataloader
・ RNN, LSTM
OpenAI gym
・ Blackjack-v0
・ CartPole-v0
seaborn
・ pairplot
tkinter
・ frame, grid
・ 画像表示
・ 画像を切り取り表示
・ 画像を保存
目的別
・ ステップ関数
・ 矩形波, 三角波
・ 1 of K 符号化法
・ 線形補間
・ 配列に番号をつける
・ ベクトル場を描く
・ 線形回帰, 多項式回帰
|
|
|