Pythonとは
基本的な使い方
・ IDLE
・ Jupyter Notebook
・ Markdown
・ コマンドプロンプトで実行
・ 仮想環境の構築
・ 仮想環境でIDLEを実行
ライブラリのインストール
・ pipの使い方
・ numpy , matplotlib等
・ graphviz
・ pytorch
・ Mecab
Pythonの関数: 一覧
共通関数
・ append , extend
・ class
・ copy
・ csv.reader
・ csv.writer
・ def , return
・ dict , defaultdict
・ enumerate
・ exit
・ for
・ if
・ import
・ in
・ input
・ lambda
・ len
・ list
・ min/max
・ OrderedDict
・ open/close
・ os
・ pickle
・ print
・ range
・ re.split
・ read/readline
・ round/floor/ceil
・ split
・ sys.argv
・ time
・ while
・ write
・ zip
・特殊メソッド
・ __name__
・ __iter__ , __next__
・ 正規表現、メタ文字
・ データの型の種類
・ 四則演算 (+ , - , * , /)
・ コメントアウト (# , ''')
numpy
・ append
・ arange
・ argmax/argmin
・ array
・ asfarray
・ astype , dtype
・ digitize
・ dot
・ hstack/vstack
・ linalg.solve
・ linspace
・ max,min
・ mean
・ meshgrid
・ mgrid
・ ndim
・ ndmin
・ pad
・ poly1d
・ polyfit
・ prod
・ random
・ reshape
・ savetxt/loadtxt
・ shape
・ std
・ transpose
・ where
・ zeros/zeros_like
scipy
・ expit
・ imread
・ interpolate
・ signal.square, sawtooth
matplotlib
・ contour
・ imshow
・ figure
・ pcolormesh
・ plot
・ quiver
・ scatter
scikit-learn
・ GaussianNB
・ KMeans
・ KNeighborsClassifier
・ SVC
・ tree
chaospy
keras
chainer
chainerrl
pandas
・ データ抽出
・ concat
・ DataFrame
・ read_excel
pytorch
・ BCELoss , MSELoss
・ Embedding
・ device
・ Sequential
・ Dataset, Dataloader
・ RNN, LSTM
OpenAI gym
・ Blackjack-v0
・ CartPole-v0
seaborn
・ pairplot
tkinter
・ frame, grid
・ 画像表示
・ 画像を切り取り表示
・ 画像を保存
目的別
・ ステップ関数
・ 矩形波, 三角波
・ 1 of K 符号化法
・ 線形補間
・ 配列に番号をつける
・ ベクトル場を描く
・ 線形回帰, 多項式回帰
|
公開日:2018/7/13 , 最終更新日:2021/9/10
|
■説明
テキストやcsvなどのファイルを読み込みます。なお、csv.readerのほうが使い勝手が良い場合があります。
■具体例:csvファイルを読み込む
以下のtest.csvファイルを題材にします。
<read:全てを文字列として読み込む>
with open("test.csv", "r") as file: # r は読み取り専用の意味
data = file.read()
data # print(data)とすると出力結果が異なるように見えるので、敢えてdataで出力
→ '4,5,7,1\n2,5,6,7\n3,9,10,11\n'
data[0] # 0番目の文字を指定
→ '4'
data[0:4] # 0から5番目の文字を指定。カンマまで一つの文字としてカウントしてしまう。
→ ',5,7'
<readline:1行だけ文字列として読み込む>
with open("test.csv", "r") as file:
data = file.readline()
data
→ '4,5,7,1\n'
<readlines:全てを文字列として読み込み、リスト化する>
with open("test.csv", "r") as file:
data = file.readlines()
data
→ ['4,5,7,1\n', '2,5,6,7\n', '3,9,10,11\n']
data[1] # 1番目のリストを指定
→ '2,5,6,7\n'
<文字列を数値化する>
numpyを使うと数値化できます。上記結果を引き続き使用します。
data[1].split(',') # splitは任意の文字でデータを区切る。
→ ['2', '5', '6', '7\n']
import numpy as np
np.asfarray(data[1].split(','))
→ array([2., 5., 6., 7.])
サブチャンネルあります。⇒ 何かのお役に立てればと
Pythonとは
基本的な使い方
・ IDLE
・ Jupyter Notebook
・ Markdown
・ コマンドプロンプトで実行
・ 仮想環境の構築
・ 仮想環境でIDLEを実行
ライブラリのインストール
・ pipの使い方
・ numpy , matplotlib等
・ graphviz
・ pytorch
・ Mecab
Pythonの関数: 一覧
共通関数
・ append , extend
・ class
・ copy
・ csv.reader
・ csv.writer
・ def , return
・ dict , defaultdict
・ enumerate
・ exit
・ for
・ if
・ import
・ in
・ input
・ lambda
・ len
・ list
・ min/max
・ OrderedDict
・ open/close
・ os
・ pickle
・ print
・ range
・ re.split
・ read/readline
・ round/floor/ceil
・ split
・ sys.argv
・ time
・ while
・ write
・ zip
・特殊メソッド
・ __name__
・ __iter__ , __next__
・ 正規表現、メタ文字
・ データの型の種類
・ 四則演算 (+ , - , * , /)
・ コメントアウト (# , ''')
numpy
・ append
・ arange
・ argmax/argmin
・ array
・ asfarray
・ astype , dtype
・ digitize
・ dot
・ hstack/vstack
・ linalg.solve
・ linspace
・ max,min
・ mean
・ meshgrid
・ mgrid
・ ndim
・ ndmin
・ pad
・ poly1d
・ polyfit
・ prod
・ random
・ reshape
・ savetxt/loadtxt
・ shape
・ std
・ transpose
・ where
・ zeros/zeros_like
scipy
・ expit
・ imread
・ interpolate
・ signal.square, sawtooth
matplotlib
・ contour
・ imshow
・ figure
・ pcolormesh
・ plot
・ quiver
・ scatter
scikit-learn
・ GaussianNB
・ KMeans
・ KNeighborsClassifier
・ SVC
・ tree
chaospy
keras
chainer
chainerrl
pandas
・ データ抽出
・ concat
・ DataFrame
・ read_excel
pytorch
・ BCELoss , MSELoss
・ Embedding
・ device
・ Sequential
・ Dataset, Dataloader
・ RNN, LSTM
OpenAI gym
・ Blackjack-v0
・ CartPole-v0
seaborn
・ pairplot
tkinter
・ frame, grid
・ 画像表示
・ 画像を切り取り表示
・ 画像を保存
目的別
・ ステップ関数
・ 矩形波, 三角波
・ 1 of K 符号化法
・ 線形補間
・ 配列に番号をつける
・ ベクトル場を描く
・ 線形回帰, 多項式回帰
|
|
|