微分積分
・ 微分公式
・ 偏微分
・ 数値微分
・ 部分積分
・ 微分方程式
・ ガウス関数の積分公式
複素数
・ 複素数とは
・ 複素数を使う意味
フーリエ変換
・ フーリエ変換, FFTとは
・ FFTの原理
ラプラス変換
・ ラプラス変換とは
・ ラプラス変換の役割
線形代数
・ 行列を使う目的, 定義
・ 逆行列 , 行列式
・ 行列の積
・ 転置行列
・ 行列の微分
・ 固有値
・ ベクトルの内積
・ ベクトルの外積
・ ベクトル場
・ コサイン類似度
・ 集合
・ 写像
・ 連立方程式を解く
指数 対数
・ 対数関数
・ 指数関数 , べき関数
・ デシベル
・ ネイピア数
その他
・ 三角関数
・ 素数
・ 階乗計算, ガンマ関数
・ arctan ,tanhの違い
・ 総和 Σ, 総乗 Π
・ ∇, grad, div, rot
・ 等差数列
・ 有理関数のマクローリン展開
・ ニュートン法
・ 重心
・ 2乗に比例する関数
・ ラグランジュの未定乗数法
・ マンハッタン,ユークリッド
・ 帰納法, 演繹法
・ 背理法
・ 弧度法
・ スプライン曲線
・ フィボナッチ数列
・ 複利計算
・ | (バーティカルバー)
|
・In English
前提知識
・平均値
座標に配置された複数点の重心の求め方を説明します。3点の重心の式は以下のとおり。各軸の平均値となります。
上記の場合、重心の計算結果は以下となります。
なお点が3つ以上ある場合においても、同様に平均値を求めれば良いです。
サブチャンネルあります。⇒ 何かのお役に立てればと
微分積分
・ 微分公式
・ 偏微分
・ 数値微分
・ 部分積分
・ 微分方程式
・ ガウス関数の積分公式
複素数
・ 複素数とは
・ 複素数を使う意味
フーリエ変換
・ フーリエ変換, FFTとは
・ FFTの原理
ラプラス変換
・ ラプラス変換とは
・ ラプラス変換の役割
線形代数
・ 行列を使う目的, 定義
・ 逆行列 , 行列式
・ 行列の積
・ 転置行列
・ 行列の微分
・ 固有値
・ ベクトルの内積
・ ベクトルの外積
・ ベクトル場
・ コサイン類似度
・ 集合
・ 写像
・ 連立方程式を解く
指数 対数
・ 対数関数
・ 指数関数 , べき関数
・ デシベル
・ ネイピア数
その他
・ 三角関数
・ 素数
・ 階乗計算, ガンマ関数
・ arctan ,tanhの違い
・ 総和 Σ, 総乗 Π
・ ∇, grad, div, rot
・ 等差数列
・ 有理関数のマクローリン展開
・ ニュートン法
・ 重心
・ 2乗に比例する関数
・ ラグランジュの未定乗数法
・ マンハッタン,ユークリッド
・ 帰納法, 演繹法
・ 背理法
・ 弧度法
・ スプライン曲線
・ フィボナッチ数列
・ 複利計算
・ | (バーティカルバー)
|
|
|